DJ/DMA Floppy Disk Controller Technical Reference Manual > Revision 1 April 1982 ## Copyright (C) 1982 by Morrow Designs, Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without prior written permission of Morrow Designs, Inc. #### DISCLAIMER No representations or warranties, express or implied, are made with respect to the contents hereof, including, but not limited to, the implied warranty of merchantability or fitness for a particular purpose. Further, Morrow Designs, Inc., reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation to notify any person of such revision. Morrow Designs 600 McCormick St. San Leandro, CA 94577 (415) 430-1970 # IMPORTANT WARRANTY INFORMATION ## LIMITED WARRANTY Morrow Designs, Incorporated, warrants its products to be free from defects in workmanship and materials for the periods indicated below. This warranty is limited to the repair and replacement of parts only and liability is limited to the wholesale list price of the product. Limitation of Liability: The foregoing warranty is in lieu of all other warranties, expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. In no event will Morrow Designs, Incorporated, be liable for consequential damages even if Morrow Designs, Incorporated, has been advised of the possibility of such damages. This warranty is void if, in the sole opinion of Morrow Designs, Incorporated, the product has been subject to abuse or misuse. Circuit boards - Parts, including the printed circuit board, purchased as factory assemblies, are warranted for a period of ninety (90) days from the original invoice/purchase date. Electro-mechanical peripherals - Peripheral equipment such as floppy disk drives, etc., not manufactured by Morrow Designs, Incorporated, carry their own manufacturers' warranties. Please contact Morrow Designs' Customer Service Department for information regarding these peripheral devices. Software/Firmware - Morrow Designs, Incorporated, makes no representations or warranties whatsoever with respect to software or firmware associated with its products and specifically disclaims any implied or expressed warranty of fitness for any particular purpose or compatibility with any hardware, operating system, or software/firmware. Morrow Designs, Incorporated, reserves the right to alter or update any program, publication or manual without obligation to notify any person of such changes. # WARRANTY RETURN PROCEDURE Should a customer experience a defect in either workmanship or materials during the warranty period, Morrow Designs, Incorporated will replace or repair the product at its expense only if the product is promptly returned to Morrow Designs, Incorporated for repair or replacement, and the following procedure for returning the product is followed: - Phone Morrow Design's Customer Service Department at (415) 430-1970. Inform the customer service staff of the nature of your problem and obtain a RETURN AUTHORIZATION NUMBER. No return shipment will be accepted without this number. - Repack the equipment and ship it to Morrow Designs, Incorcare of the Customer Service Department, porated, McCormick St., San Leandro, California, 94577. All freight charges must be prepaid by the customer, as well as related charges, such as customs clearance and documentation. CODS WILL BE REFUSED. Indicate the RETURN AUTHORIZATION NUMBER on the waybill and shipping label. Include with the equipment a copy of proof of purchase showing the date the equipment was purchased. Any shipment received without proof of purchase will be billed as non-warranty repairs. also include a brief written description of the problem experienced with the equipment. - 3. Morrow Designs, Incorporated, will repair or replace defective items and return the product to the customer via UPS surface, prepaid rates. Any other form of delivery or shipment required or requested by the customer is at the sole expense of the customer. - 4. SHIPPING DAMAGE: (a) Morrow Designs, Incorporated, is not responsible for damage to goods in transit. (b) If you return a product because of shipping damage, have the product inspected by the carrier before returning it to us. Failure to do so may result in denial of your claim by the carrier. (c) Always ship the product in its original packing material. If the original packing material has been damaged or lost, new packing material can be purchased from Morrow Designs. Many shippers will not honor damage claims if the product is not adequately packaged. - 5. Morrow Designs, Incorporated, is not responsible for the integrity of any data recorded on any media returned for service or repair. It is the responsibility of the user to back-up all necessary information. # DJ/DMA Floppy Disk Controller # Technical Manual # Revision 1 # Table of Contents | 1. | INTRODUCTION | 1 | |----|--|---| | 2. | 2.6.6. SET ERROR RETRY COUNT. 2.6.7. SET LOGICAL DRIVE. 2.6.8. SET HEAD UNLOAD/DRIVE DESELECT TIMEOUT. 2.6.9. READ TRACK. 2.6.10. WRITE TRACK. 2.6.11. OUTPUT TO SERIAL PORT. 2.6.12. SERIAL INPUT ENABLE/DISABLE. 2.6.13. CONTROLLER HALT. 2.6.14. BRANCH IN CHANNEL. 2.6.15. SET CHANNEL ADDRESS. 2.6.16. SET TRACK SIZE. 2.6.17. READ CONTROLLER MEMORY 2.6.18. WRITE CONTROLLER MEMORY 2.6.19. EXECUTE CONTROLLER ROUTINE. | 33445566799131141566771111111111111111111111111111111 | | 3. | IEEE 696 (S-100) BUS CONSIDERATIONS | 21 | | 4. | INTERRUPTS | | | 5. | I/O CONNECTORS | 22 | | 6. | JUMPERED SETTINGS | 22 | # Table of Contents, Cont. | 7. | BOOTSTRAP LOAD | 23 | |---------------------------------|-----------------------------|------------| | 8. | BOOTING THE DJDMA | 24 | | 9. | FORMATTING DISKETTES | 24 | | | Software Listing | -]
-] | | | | | | | <u>List of Tables</u> | | | 2-2
2-3
2-4
2-5
2-6 | Status Byte Codes | | | 7-1. | . 19-Byte Handshake Routine | | #### 1. INTRODUCTION and the property of the second The Disk Jockey/Direct Memory Access (DJDMA) Floppy Disk Controller is a single board S-100 subsystem. It communicates with both 8 inch and 5 1/4 inch floppy disk drives. Up to eight drives may be connected to the controller - with the limitation that no more than four of each type can be accommodated. Special programmable bipolar LSI logic makes it possible to read and write media with almost any format, be it hard or soft sectored. Presently, the controller supports soft-sectored IBM compatible 8 inch media and hard-sectored North Star compatible 5 1/4 inch media. In the spring of 1982, IBM and Radio Shack 5 1/4 inch soft-sectored media will also be supported. Existing controllers in the field can be upgraded by replacing two of the ICs on the unit. This is done at moderate cost to the user. The controller has its own Z-80 4MHz microprocessor which is used to supervise data transfers between the disk drive and the system memory without intervention of the main CPU. This relieves the main CPU of time consuming processes which include head positioning, rotational delays, and the usual byte-by-byte transfer of data from the diskette to main memory. As a result, transfers are faster and more efficient. Moreover, the main CPU has more time for data processing, and thus, supports more users and/or tasks. The main advantage of the DJDMA controller over almost all the others is its "glitch free" direct memory access channel. This advanced channel concept allows the controller to communicate with S-100 memory by "stealing" bus cycles from the main CPU. This idea of an intelligent I/O channel was first implemented by IBM on their famous 370 mainframes. Now for the first time, this powerful concept has been implemented on the S100 bus. The channel has the full 24-bits of memory addressing as described in the proposed IEEE standard for the S-100 bus. Also, a great deal of care has been taken in the design of the interface circuitry so it conforms in every detail to this new standard and still allows the controller to work well with existing systems designed before the standardization effort was started. The controller is a temporary bus master, meaning that it has the same access to memory as the CPU whenever it has control. It also features priority logic which allows it to contend with up to sixteen other "temporary" masters that may also want to "steal" bus cycles from the main CPU, or the "permanent" master. The controller acts as a temporary master (TMA). A temporary master may take control of the bus to perform a DMA operation. This is possible because both the TMA and the CPU drive control lines. The CPU, as permanent master, monitors signals from the TMA. When the TMA wants control, it first asserts a HOLD/ signal to the CPU. Assuming the TMA has priority, the CPU acknowledges this signal upon completion of the present bus cycle by returning a processor hold acknowledge (pHLDA) signal. Upon receipt of this signal, the TMA enables its control line and asserts a control disable (CDSB) signal, disabling the CPU's control line. The TMA then disables the CPU's data-out, address and status lines using DODSB/, ADSB/ and SDSB/ signals. At that point the TMA has complete control to perform its DMA operation. To return control to the
CPU, the TMA first disables its own data-out, address and status lines, then re-enables the CPU's control lines, and simultaneously, its data-out, address and status lines. The TMA then releases its control line and makes false the HOLD/ signal, thus returning full control to the CPU. So far, the process has been described as if only one temporary master wanted control of the bus. There can be up to 16 temporary masters on the bus. When there is more than one temporary master, they use the four DMA lines to decide who gets to assert HOLD/. Any device requesting the bus places its TMA priority level on the bus, and circuitry on the device decides if it has the highest priority. The device with the highest priority (\emptyset F hex is highest) asserts HOLD/. It removes its priority from the DMA lines when it receives pHLDA from the permanent master. The features associated with the intelligent channel on the controller make it exceptionally desirable in multi-tasking and multi-user applications. In fact, many were tailored to enhance the performance of Morrow Designs new, powerful DECISION I multi-processing IEEE 696/S-100 machine. The DJDMA is an integral part of this advanced microcomputer system which incorporates many of the concepts originally introduced by IBM in their famous 370 series mainframes. The DJDMA can boot itself up on the bus and even has a primitive serial port which is intended for diagnostic purposes or possibly even integrating the controller into a larger S-100 system that has I/O that the boot disk is not aware of. Under no circumstances can it be used as a general purpose serial port to the system, however, since it is inactive during disk activity. All in all, there is nothing on the market in the way of an S-100 bus floppy disk controller that comes anywhere near the performance and versatility of the DJDMA. For that matter, we here at Morrow Designs know of no other floppy disk controller on any bus that can match the DJDMA in price, power, performance, and flexibility. Good luck with this product. One of the purposes of this document is to detail how the DJDMA controller can improve the speed and performance of your system. If we've missed anything, please let us know. #### 2. PROGRAMMING SPECIFICATIONS #### 2.1. The Channel Concept The IBM 370 mainframe was the first computer system to make use of the channel concept. In the traditional setting, an I/O controller, even one with direct memory access ability, was normally sent commands one at a time. Status was then reported through I/O ports after a command had completed. One of the things a Direct Memory Access Controller does (and should do well) is communicate with main memory. Having realized this, someone very clever at IBM reasoned that if a controller could communicate with memory all that easily, why shouldn't it pick up its commands from memory as well? For that matter, why not have it lay down its status information in the CPU's main memory also? Once the idea of picking up one command from memory is accepted, it is only a small step to think about placing strings of commands in memory and having the controller begin treating memory in the same way as the CPU does itself! That is, memory should be used for both instructions and data. There is one detail missing in the above discussion. How is the controller to be started and stopped? A CPU starts running when power is turned on and continues (in theory) forever. But then there is the situation of a device whose primary job it is to transfer information to and from main memory and a mass storage device of some kind; it should remain idle until the CPU tells it otherwise. A possible solution to the problem above is to have the device sample a memory location for a start command. At power-up, however, solid state memory does not have a predictable pattern. A start command could be present before it was actually issued by the CPU. The only foolproof way to issue a start command is through an I/O port. But doesn't that put us right back where we started? Actually, no. It takes very little I/O circuitry to issue a simple pulse which can serve as a start command. It is also a small price to pay in cost and circuit board real estate for the flexibility and efficiency that is obtained. Stop commands are much easier. Simply build an instruction into the controller's command set that forces it back to the idle state it was in just prior to the initial start pulse issued by the CPU. Obviously, a channel type of controller needs some kind of onboard intelligence. At the time that IBM first built this kind of device, it was expensive both in terms of dollars and in circuit board real estate to implement this intelligence. Today ### Programming Specifications however, the situation is quite different. Microprocessors are inexpensive and take only a modest amount of space on a circuit board. In theory, the only limitation to the power and flexibility of a channel driven controller is the size of the memory local to the resident microprocessor. Since memory is getting denser and cheaper, it would seem that time will favor the channel approach to I/O controllers. #### 2.2. The Start Channel Command Just as in the general case discussed above, there is a single primitive I/O port on the DJDMA. It resides at location EF (hex) unless a custom unit has been ordered with a special I/O address. This port's only purpose is to send start pulses to the DJDMA controller. Any output instruction to port EF (hex) starts the DJDMA. It doesn't matter what value is sent nor does it matter what kind of device sends the data. Any time any output reference is made to this port by the main CPU permanent master, or even by a temporary master, the DJDMA begins fetching and executing commands. Where these commands come from and how they work is taken up below. ## 2.3. The Channel Command Address When the DJDMA first powers up or is reset, there is a three-byte pointer initialized in its local memory. This pointer determines where the controller picks up its first command when a start pulse is issued via I/O port EF (hex). There are actually two of these three-byte values the DJDMA maintains. The first points to where it should start its command sequence. The second points to where it should get its next command in the event that the current one is not a halt command. The user needs to be aware of both of these pointers as he sets up command sequences for the controller to execute. The second pointer has the same function as the program counter of the main CPU: it always points to the next command that the controller will execute. The first pointer is similar to the value forced into the program counter (PC) of the main CPU when a reset signal is issued. In most cases, a reset signal forces a Ø into the PC. The processor commences to fetch instructions at this value. The same is true for the DJDMA, except that the value is not zero. Also, unlike the CPU, this initial location can be changed by a sending the proper command to the controller. The initial location that the DJDMA controller begins fetching commands from is 50 (hex). The command that alters this starting location is described in the next section. #### 2.4. Command Structure Commands to the DJDMA controller are at least two bytes long. The first byte is always the command code. Parameter lists follow the command byte (if needed) and the command status byte (if needed) comes at the end of the command string. The length of a command string varies with the command. Unless a branch in channel command is issued, commands must be arranged in memory one after the other with no gaps between the end of one command and the beginning of another. Sequences of commands must be terminated with either a controller halt command or a branch in channel command. If a sequence ends with a branch in channel command, another sequence of commands must be present at the location specified in the address parameter list of the branch in channel command. ## 2.5. DJDMA Controller Commands The Disk Jockey DMA controller recognizes the following commands: - SET DMA ADDRESS - READ A SECTOR - WRITE A SECTOR - SENSE DRIVE STATUS - SET INTERRUPT REQUEST - SET ERROR RETRY COUNT - READ TRACK - WRITE TRACK - OUTPUT SERIAL PORT - SERIAL INPUT ENABLE/DISABLE - CONTROLLER HALT - BRANCH IN CHANNEL - SET CHANNEL ADDRESS - SET TRACK SIZE - SET DRIVE DESELECT/HEAD UNLOAD TIMEOUT - SET LOGICAL DRIVE - READ CONTROLLER MEMORY - WRITE CONTROLLER MEMORY - BRANCH TO CONTROLLER ROUTINE The last three commands require great care to use. They are used to format diskettes and will be used to support media formats which are not yet implemented. Improper use of any of the last three commands could produce unpredictable results and may cause the loss of information on write-enabled diskettes in drives connected to the controller. It could also cause the controller to be inoperative until a bus reset is performed. Morrow Designs will have a separate document (at extra cost) that describes the firmware on the DJDMA controller. This information should be available at the end of first quarter 1982 or early second quarter. Thus, users with special applications will have a way to extend the command structure of the DJDMA controller. However, extended commands will not be supported by Morrow Designs and we cannot stress too strongly that efforts in this direction will require a great deal time and expertise to complete and debug. # 2.6. Controller Command Specifications Specifications for each of the controller commands are described in the following sections. In many instances, examples are given to fully illustrate use of the command. # 2.6.1. SET DMA ADDRESS | Command | code: | 23 | (hex) | |---------|------------------------|----|-------| | Command | length: | | | | | | 4 | bytes | | Command | parameter list length: | | | | | parameter rist rength: | 3 | bytes | | Command | status list length: | Ø | bytes |
The command length is four bytes. The first byte is the command code: 23 (hex). The next three bytes specify a 24-bit address in main memory where data is written to or read from during subsequent disk transfers. This field must be arranged so that the least significant byte of the address directly follows the command byte. The byte of next highest significance follows. The highest order byte of the address is last. The last byte specifies an extended page as defined in the proposed IEEE standard for the S-100 bus and allows memory addressing to be extended to 16 million bytes. In systems that do not support this new extended addressing, the value of this high order byte is not important. However, it must be present - whether it is used or not. Other commands which have three byte address fields in their parameter list require the same byte significance order as described above. The firmware that processes commands on the DJDMA expects all address fields to be three bytes long - even if only two of the three have effect on the address bus of the system. The following example is a command that sets the DMA address of the controller to location 80 (hex) - the default disk data buffer of the popular CP/M operating system: 23 80 00 00 (hex). ### 2.6.2. READ SECTOR Command code: 20 (hex) Command length: 5 bytes Command parameter list length: 3 bytes Command status list length: 1 byte The three-byte parameter field following the command code consists of - 1. track - 2. side/sector - 3. drive in that order. The side select is encoded in the high order bit of the sector field and merged together to form the second byte in the parameter list. The third byte determines which of eight possible drives are read. If the system has been booted up from a $5\ 1/4$ inch drive, drives Ø through 3 specify this; drives 4 through 7 specify 8 inch drives. If the system has been booted from an 8 inch drive, the numbering is reversed with the first four being 8 inch drives and the last four being $5\ 1/4$ inch. The following example is a command that reads data from sector 3 of track 5 on side 1 of drive Ø: #### 20 05 83 00 00 The last zero is provided so that the controller can fill in the status of the transfer after it has completed the read. Here is a second example that reads sector 2 from track 6 on side Ø of drive 1: ### 20 06 02 01 00 Again, the last byte is for status reporting and it must be there. The length of the sector (and consequently a valid range of sector values) depends on what size drive is being addressed and how the media has been formatted. In the media currently supported, the following sector values and data field lengths are relevant: | 5 1/4" hard sectored single density: | Ø | _ | 9 2 | 56 | bytes | |--------------------------------------|---|---|------|----|-------| | 5 1/4" hard sectored double density: | | | | | bytes | | 8" soft sectored single density: | 1 | _ | 26 1 | 28 | bytes | | 8" soft sectored double density: | 1 | | 26 2 | 56 | bytes | | 8" soft sectored double density: | 1 | | 15 5 | 12 | bytes | | 8" soft sectored double density: | 1 | _ | 8 10 | 24 | bytes | The numbers in the above list are all decimal. The sector size, density, and valid range of values for the sector ### Command Specifications number are all determined automatically by the controller. The controller can inform the system of these parameters by executing the SENSE DRIVE STATUS command which is taken up below. These details are presented here because it is necessary to know how much space the controller will use when data is read from the disk into main memory. Also, an error occurs if incorrect values are specified for the sector, track, or drive. All 8 inch drives presently have 77 tracks numbered \emptyset through 76. This is not the case with 5 1/4 inch drives. Some have 35 tracks numbered \emptyset through 34, others have 40 tracks numbered \emptyset through 39, and finally, the new double track density 5 1/4 inch drives have 80 tracks numbered \emptyset through 79. The default value for 5 1/4 inch drives on the DJDMA is 40. However, this value can be changed by executing a SET TRACK SIZE command which is discussed below. The last byte in the read sector command is called the status byte. This byte should be filled with some value other than what the controller might use when it reports status after the command is completed. A \emptyset is ideal since the controller does not use this value. For that matter, it does not use FF either. Either of these values are handy since they can be tested easily. By testing the status byte, the system can determine when a read command (among others) has completed. Below is a list of status byte codes along with their meanings. All values are in hex. #### Table 2-1. Status Byte Codes | 4Ø - | normal completion - no errors | |-----------------|---| | 8Ø - | improper command code | | 81 - | illegal disk drive value | | 82 - | drive not ready | | 83 - | illegal track value | | 84 - | unreadable media | | 85 - | improper sector header - no sync byte | | 86 - | CRC error in sector header read | | 87 - | seek error | | 88-8D - | compare error in sector header scan | | 8E - | CRC error in data field | | 8F - | illegal sector value for current media | | 9Ø - | media is write protected (writing only) | | 91 - | lost data - DMA channel did not respond | | 92 - | lost command - channel did not respond | | | | The above list is complete and applies to any command that that reports status in its last byte. Not all codes apply to all commands. For example, 90 (hex) never appears as the status reported by the READ SECTOR command. #### 2.6.3. WRITE SECTOR | Command | code: | 21 | (hex) | |---------|------------------------|----|-------| | Command | length: | 5 | bytes | | Command | parameter list length: | 3 | bytes | | Command | status list length: | 1 | byte | The three-byte parameter field and the status byte have the same properties as those in the read sector command. All the items discussed in the read sector command apply to the write sector command with the exception that the write sector command can report a media write protect error (90 hex). #### 2.6.4. SENSE DRIVE STATUS | Command | code: | 22 | (hex) | |---------|------------------------|----|-------| | Command | length: | 6 | bytes | | Command | parameter list length: | 1 | byte | | Command | status list length: | 4 | bytes | The single byte in the parameter list specifies a drive. Legal values range from Ø to 7. The last byte of the status list has codes which were listed above in the READ SECTOR command. The first three bytes of status are peculiar to a specific drive and are detailed below. However, unless the last status byte contains a 40 (hex), the preceding three bytes do not accurately reflect the condition and characteristics of the drive whose status was supposed to be sensed. If any value other than 40 (hex) is present, nothing can be learned from the first three status bytes. When the final byte contains a 40 (hex), the first three describe characteristics and status concerning the drive specified in the parameter byte of the command. # Table 2-2. STATUS BYTE 1: Drive Characteristic Byte Each bit in this byte describes a different characteristic of the drive specified in the parameter field of the command. - Bit Ø Information internal to the controller. - Bit 1 If the media is hard-sectored, this bit is a 1. When the media in the drive is soft-sectored this bit will be a Ø. - Bit 2 If the drive is 5 1/4 inch, this bit is a 1. If the drive is 8 inch, the bit is a \emptyset . - Bit 3 If the drive has a DC motor with an ON/OFF switch, this bit is a l. If there is no ON/OFF switch, or if the drive motor is AC, this bit is a \emptyset . - Bit 4 If the media in the drive is double density, this bit is a 1. It is \emptyset only if the media is single density. - Bit 5 If this bit is a 1 there is no "drive ready" signal supplied by the drive. For drives with no "ready" signal, the DJDMA firmware tests for the presence of sector/index holes. If the drive has an active "ready" signal, this bit is a Ø. - Bit 6 If there is no "head load" command line to the drive, the controller assumes that the head(s) are always loaded against the media and this bit is a l. If there is a "head load" command line to the drive, this bit is a Ø. - Bit 7 If the head(s) are currently loaded against the media, this bit is a l. If the head(s) are not loaded, this bit is a Ø. # Table 2-3. STATUS BYTE 2: Sector Length Code - 0, 1, 2, or 3 The Ø indicates a sector length of 128 bytes, 1 stands for a length of 256 bytes, 2 means that the length is 512 bytes, and 3 indicates that the sector is 1024 bytes long. These are all decimal numbers. ## Table 2-4. STATUS BYTE 3: Drive Status/Characteristic Byte There is an input port on the controller which can examine status signals transmitted directly from the selected drive. The third status byte is a direct image of this port. - Bit Ø Used internally by the controller and is of no meaning to the system. - Bit 1 Current status of the serial input line from an RS-232 device which may be attached to connector P3, the serial port of the controller. - Bit 2 This bit indicates that a double-sided 8 inch drive is currently selected and that double-sided media is present in the drive. This line is not driven by 5 1/4 inch drives; thus, an indirect means must be employed to determine if a 5 1/4 inch drive is double-sided and has double-sided media in it. - Bit 3 Currently not used. - Bit 4 This is the index/sector hole indicator. If this bit is a 1, the drive has sensed the presence of either an index hole or a sector hole. - Bit 5 If this bit is a 1, the head(s) of the drive are at Track Ø. If the head(s) are positioned over some other track, this bit is a Ø. - Bit 6 This bit is a 1 if the media in the drive is write protected. A zero
indicates that the media is not write protected and disk write commands do not produce "write protect" errors. - Bit 7 This is the drive ready bit. Most 5 1/4 inch drives have no signal on this line; thus, it is not a good "drive ready" indicator in this case. - All 8 inch drives produce a "ready" signal at this bit. If the current drive is an 8 inch and this bit is 1, the drive is "ready" to accept read, write, or step commands. If it is a Ø, the 8 inch drive is not "ready" and will not respond to commands from the controller. ### 2.6.5. SET INTERRUPT REQUEST Command code: 24 (hex) Command length: 2 bytes Command parameter list length: 0 bytes Command status list length: 1 byte This command generates an interrupt to the system bus. There is a bus driver on the DJDMA circuit board whose output terminates at a jumper pad near the lower edge of the board (the exact location is described later in the manual). This jumper pad is arranged so that the driver can be connected to the main interrupt line of the system bus (PINT*) or any one of the eight vectored interrupt lines (VIØ*, VII*, ... VI7*). The controller is shipped from the factory with the driver uncommitted. If the DJDMA is to generate interrupts to the system, this driver must be connected to one of the nine interrupt lines. If the driver is not connected, the INTER-RUPT REQUEST command causes the controller to pause until another start pulse is issued by the system. However, once an INTERRUPT REQUEST command is executed, the controller is put into a special state where the board responds differently to the start pulse than it usually does. Normally a start pulse causes the controller to begin fetching commands at the location specified by the most recent channel command word address. When the DJDMA executes an INTERRUPT REQUEST, it activates the interrupt bus driver on the circuit board. It then pauses with this bus driver still active. Upon receipt of the next start pulse, the controller turns off the bus driver generating the interrupt and fetches the command which immediately follows the interrupt request command. The controller thus treats the first start pulse issued after the interrupt request command has completed as an INTERRUPT ACKNOWLEDGE handshake signal. This is the only circumstance in which a start pulse to the controller does not cause the command pointer to be reset. The system can test the status byte following the command code to determine when the command has completed. When the command completes, it fills the status byte with a 40 (hex). When the interrupt request bus driver is not connected, an interrupt request command causes the controller to pause until the next start pulse is received, at which time it resumes executing commands where it left off. ## 2.6.6. SET ERROR RETRY COUNT Command Code: Command length: Command parameter list length: Command status list length: Ø bytes This command specifies how many times a sector is read in the event that a CRC error occurs in the data field. At least one read always takes place, so the smallest value that should appear in the parameter byte is a l. This value can be as high as 255 (decimal). The default value is 10 (decimal). This command's main purpose is to ensure that the value can be made smaller for diagnostic purposes. It is also useful when a diskette becomes worn and data recovery becomes more difficult. In this case, the value is made larger. ## 2.6.7. SET LOGICAL DRIVE Command code: 2E (hex) Command length: 3 bytes Command parameter list length: 1 byte Command status list length: 1 byte This command allows the user to change the logical numbering assigned to the 8 inch and $5\ 1/4$ inch drives. The default values assigned the the 8 inch drives are 0 through 3, while the $5\ 1/4$ inch drives are assigned values 4 through 7. If a 4 appears in the parameter list of this command, the 5 1/4 inch drives are assigned drive values Ø through 3, while the 8 inch drives have their values changed to 4 through 7. A Ø in the parameter field reverses these values to the original default values. There is no status byte associated with this command and bit-2 in the parameter field is the only part of the byte examined by the command. The status byte reported by the command reflects the logical value of the first physical 8 inch drive prior to the execution of the SET LOGICAL DRIVE command. If the status is 40 (hex), the previous logical value of the first physical 8 inch drive was 0. If the status is 44 (hex), the old value was 4. The logical values assigned to the drives are also affected by performing a bootstrap operation which is discussed later. ## Command Specifications ## 2.6.8. SET HEAD UNLOAD/DRIVE DESELECT TIMEOUT | Command | Code: | 2F | (hex) | |---------|------------------------|----|-------| | Command | length: | 2 | bytes | | Command | parameter list length: | 1 | byte | | Command | status list length: | Ø | bytes | In order to conserve power and maximize diskette life, during periods of disk inactivity the controller unloads the drive head(s) and deselects the drive after a certain number of revolutions of the diskette. Normally, the controller waits sixteen revolutions before it deselects a drive. This command allows the user to change this situation. The value in the parameter list determines how many revolutions occur after no disk activity before the head(s) are unloaded and the drive is deselected. A disk transfer operation requires more time if the drive is not selected and so, under certain conditions, it may be desirable to extend the time before a drive is deselected after a transfer occurs. This command makes it possible to affect this situation. The value in the parameter field should be between 1 and 255 (decimal). However, when the heads are loaded for extended periods of time with the motor running, diskette media life is shortened considerably. ### 2.6.9 READ TRACK | Command | code: | 29 | (hex) | |---------|------------------------|----|-------| | Command | length: | 8 | bytes | | Command | parameter list length: | 6 | bytes | | Command | status list length: | 1 | byte | This command reads an entire track into main memory starting at the value specified by the most recent SET DMA ADDRESS command. The transfer begins with the first full sector encountered by the controller. Thus, the buffer may not fill from the beginning. As an example, suppose that the diskette had eight 1024 byte sectors and the first full sector of data encountered was Sector 6. In this case the last 3072 bytes of the buffer would be filled with Sectors 6, 7, and 8. The DJDMA memory pointer would then be reset to the start of the track buffer and Sectors 1 through 5 would be transferred. The first three bytes of the parameter list specify - 1. track - 2. side - 3. drive in that order. The side bit must appear in the most significant bit of the byte. Thus, the second byte in the parameter list is either Ø or 8Ø (hex). The last three bytes of the parameter list form a memory pointer to a sector table. There must be an entry in this table for each sector on the track. As an example, if the diskette in the selected drive had 512 byte sectors, there would be fifteen entries and the table length would also be fifteen. This table should be initialized with Øs, 80s (hex), or FFs (hex). As a sector of the track is read, the controller fills the byte of the table corresponding to the sector with status information concerning that particular sector (assuming the initial entry was \emptyset). Thus, the system can determine error information individually, sector by sector. If the controller encounters an FF (hex) entry in the sector table, it skips that sector which corresponds to the entry. If a whole section of the table has FFs, the sectors corresponding to this section are not read. If the controller encounters an entry in the table of 80 (hex), the READ TRACK command terminates at that point. An example should illustrate these ideas. Suppose side 1 of track 23 (decimal) is to be read into a track buffer starting at location 00E000 (hex) from drive 2 and that a set DMA address command with this value has already been executed. Suppose also that there are 1024 byte sectors on the diskette and that the sector table is to immediately precede the track buffer in memory. The command to read the track would then appear as follows: ## 29 17 8Ø Ø2 F8 DF ØØ ØØ The sector table address of $\emptyset\emptyset$ DFF8 (hex) has a value of eight less than $\emptyset\emptyset$ E $\emptyset\emptyset\emptyset$ (hex) since there are eight sectors on the track of the diskette. The last byte (indicated with a value of $\emptyset\emptyset$) is the overall status byte for the command. The status codes are the same as the READ SECTOR COMMAND where they are listed. #### 2.6.10. WRITE TRACK | Command | Code: | 2A | (hex) | |---------|------------------------|----|-------| | | length: | | bytes | | | parameter list length: | | bytes | | Command | status list length: | 1 | byte | The write track command is similar to the READ TRACK command. The six bytes of the parameter list are exactly the same and even the sector table entries work the same. Normally, the table has 0s as entries. Sectors that are not to be written (or rewritten) are marked with FFs (hex) while an 80 (hex) causes the command to terminate. ### Command Specifications As with the read track command, the starting address of the track buffer is initialized with a SET DMA ADDRESS command. #### 2.6.11. OUTPUT TO SERIAL PORT | Command | code: | 2B | (hex) | |---------|------------------------|----|-------| | Command | length: | 3 | bytes | | Command | parameter list length: | 1 | byte | | Command | status list length: | 1 | byte | This command communicates with the output portion of the bit serial port on the DJDMA. The parameter byte is filled with the ASCII value that is to be transmitted to the RS-232 device connected to the port. The status byte should be
initialized to either \emptyset or FF (hex). The command fills the status byte with a $4\emptyset$ (hex) when all eight data bits and two stop bits have been transmitted. The speed of this serial port is 9600 baud and cannot be changed. Also, it is vital that the system refrain from sending new start pulses to the controller until this command has completed. Otherwise, transmission of the serial stream is aborted before any or all of the bits have been sent. The main purpose of the port in this subsystem is to allow a user to boot-up in a system where I/O devices are not defined on the boot diskette. This port is not adequate as a system consul port and will cause the controller to run less efficiently while the port is active (there is no disk activity while the serial port is engaged in data transmission). Input serial data can also be easily lost if the controller is supervising data transfer to or from a disk drive. The input side of this serial port does not work the same as the output and is discussed in the next command. #### 2.6.12. SERIAL INPUT ENABLE/DISABLE | Command | Code: | 2C (hex) | |---------|------------------------|----------| | Command | length: | 2 bytes | | Command | parameter list length: | l byte | | Command | status list length: | Ø bytes | This command enables or disables input from the bit serial RS-232 port on the controller. Serial input operates in a slightly different manner than serial output. If the input side of the port is enabled, characters received by the port are deposited at location 00003E (hex). After loading a new character at this location, the controller writes 40 (hex) at location 00003F (hex). This second location serves as a status flag for serial input and should be reset to some other value after reading the character. In the enable/disable command, the value of the parameter byte determines whether the port is to be enabled or disabled. A Ø in this byte instructs the controller to turn off the port, while a l forces the DJDMA to enable input. At boot-up, input is enabled, but if there is no terminal connected to the board, it is automatically disabled. #### 2.6.13. CONTROLLER HALT | Command | code: | 25 | (hex) | |---------|------------------------|----|-------| | Command | | | bytes | | | parameter list length: | | bytes | | Command | status list length: | 1 | byte | This command is used to halt the DJDMA controller. There are no parameters. The status byte should be initialized to \emptyset or FF (hex). The controller fills this byte with a $4\emptyset$ (hex) when the command completes. As mentioned previously, this command resets the command pointer. Hence, the next start pulse causes the controller to begin fetching commands from the channel command word address which has an initial value of $\emptyset\emptyset\emptyset\emptyset5\emptyset$ (hex). This value can be changed with a command that is described below. #### 2.6.14. BRANCH IN CHANNEL | Command | code: | 26 | (hex) | |---------|------------------------|----|-------| | Command | length: | | bytes | | | parameter list length: | | bytes | | Command | status list length: | | bvtes | The three parameter bytes specify a branch address for the controller. This address is the location from where the controller fetches its next command. The address bytes are arranged so that the low order byte immediately follows the command code, the middle order byte is next and the high order byte is last. There is no status code and immediately after execution, the controller picks up the next command from the branch address. ## 2.6.15. SET CHANNEL ADDRESS | Command | code: | 27 | (hex) | |---------|------------------------|----|-------| | Command | length: | | bytes | | | parameter list length: | | bytes | | Command | status list length: | | bytes | The three parameter bytes of this command specify a memory address. After this command has executed, start pulses from the system cause the controller to fetch its first instruction at this address. The order of the bytes is the same as the branch in channel command. There is no status byte associated with this command. ### Command Specifications #### 2.6.16. SET TRACK SIZE | Command | Code: | 2D (hex) | |---------|------------------------|----------| | Command | length: | 4 bytes | | Command | parameter list length: | 2 bytes | | Command | status list length: | l byte | This command allows the system to change the number of tracks that the controller assumes are on a disk drive. The first byte in the parameter list describes a drive and should have values between Ø and 7. Other values cause the command to return an error and not change the track value of any drive. The second byte must contain a hex number which is **one larger** than the largest numerical track on the diskette. For 35 track drives, this value is 35 since the track numbering starts at zero. For the same reason, the value is 40 for 40 track drives, 77 for 77 track drives, and 80 for 80 track drives. (All the numbers used in this paragraph are decimal. They must be changed to hexadecimal when incorporated into the command string.) It is possible to damage a drive if seeks are performed to tracks which extend beyond the boundaries of the seek mechanism. The controller has no way to determine if a particular value is improper for a given drive. The user must exercise care in executing this command and Morrow Designs takes no responsibility for damage that occurs through its misuse. ## 2.6.17. READ CONTROLLER MEMORY | Command | Code: | ΑØ | (hex) | |---------|------------------------|----|-------| | Command | length: | 8 | bytes | | Command | parameter list length: | 7 | bytes | | Command | status list length: | Ø | bytes | The first three bytes of the parameter list specify a main memory address with bytes in ascending order (just like the other commands that required a three-byte address field.) The next two bytes specify a count which can have values anywhere between Ø and FFFF (hex). The last two bytes specify an address in the memory of the on-board Z-8ØA microprocessor. This command transfers local memory to main memory which allows the main CPU to read the controller's memory. It is not advisable to read locations 4ØØl (hex), 8ØØl (hex), AØØØ (hex), etc., since this type of reference causes the controller to hang waiting for data from a drive when none is selected. The only way to reliably recover from this fault is to issue a reset to the system. Morrow Designs does not recommend use this command and does not support applications that make use of this command or the two that follow. This command reports no status. #### 2.6.18. WRITE CONTROLLER MEMORY | Command | Code: | Al | (hex) | |---------|------------------------|----|-------| | Command | length: | 8 | bytes | | Command | parameter list length: | 7 | bytes | | Command | status list length: | Ø | bytes | The first three bytes of the parameter list specify a main memory address in ascending order (just like the other commands that required a three-byte address field.) The next two specify a count that can range between \emptyset and FFFF (hex). The last two bytes specify an address in the memory space of the on-board Z-80A microprocessor. This command transfers data from main memory to the memory of the controller. There are only 1024 bytes of RAM on the controller board. This RAM starts at location 1000 (hex). The only locations safe to write in are between 1030 and 127F (hex). Writing in other locations produces unpredictable results and can lead to loss of data on diskettes which are not write protected and are inserted in drives connected to the controller. Morrow Designs does not support the use of this command. This command is used in diskette format programs (included in this manual) but we strongly recommend that it not be used for other purposes). There is no status byte associated with this command. #### 2.6.19. EXECUTE CONTROLLER ROUTINE | Command | Code: | A2 (hex) | |---------|------------------------|----------| | Command | length: | 3+ bytes | | Command | parameter list length: | 2 bytes | | Command | status list length: | Ø+ bytes | The two bytes in the parameter list specify an address in the memory space of the on-board Z-80A microprocessor. This command forces the on-board processor to branch to and begin executing instructions at this address. As with the previous command, it is extremely dangerous and should not be used by anyone except those well versed with the inner workings of the controller. The status list length is given as 0+ bytes because the length and type of status varies depending on the nature of the routine at the specified address. As with the previous two commands, Morrow Designs does not support use of this command. ## Command Summary #### 2.7. Command Summary The following tables summarize commands that are both supported and unsupported by the DJDMA. ### Table 2-5. Supported Commands - Set DMA (low, med, high) - Read Sector (track, side/sector, drive, status) - Write Sector (track, side/sector, drive, status) - Sense Status (dstatl, dstat2, dstat3, status) - Set Interrupt Request (status) - Set Error Retry Count (count) - Set Logical Drive (drive, type) - Set Head Unload/Drive Deselect Timeout (revolution count) - Read Track (track, side, drive, low, med, high, status) - Write Track (track, side, drive, low, med, high, status) Serial Port Output (ASCII byte) - Serial Input Enable/disable (control byte) - Controller Halt (status) - Branch in Channel (low, med, high) - Set Channel Address (low, med, high) - Set Track Size (drive, hitrack) #### Table 2-6. Unsupported Commands - Read CMemory (tlow, tmed, thigh, lcnt, hcnt, slow, shigh) - Write CMemory (slow, smed, shigh, lcnt, hcnt, tlow, thigh) - Execute Controller Routine (low, high, ..., ...) ### 2.8. Status Codes The following table summarizes the DJDMA status codes. #### Table 2-7. Status Code Summary | STATUS CODE | DESCRIPTION | |----------------
--| | 80
81
82 | Normal completion - no error encountered
Improper Command Code
Improper Disk Drive Value
Disk Drive Not Ready | | 84 | Improper Track Value
Unreadable Media | | 85
86
87 | Improper Sector Header - No Sync Byte(s) CRC Error in Sector Header Scan Seek Error | | 88 - 8D | Compare Error in Sector Header Scan
CRC Error in Data Field | | 8F | Improper Sector Value | | | Media Write Protected
Lost Data - DMA Channel did not respond | | 92 | Lost Command - Channel did not respond | # 3. IEEE 696 (S-100) BUS CONSIDERATIONS The DJDMA controller has been designed to meet the IEEE/696 proposed standard for the S-100 bus and will operate properly in any S-100 mainframe which meets this proposed standard and can accommodate temporary bus masters. In fact, the DJDMA runs in most existing S-100 systems in operation today. However, we cannot guarantee that the controller will operate in a system unless it meets all the specifications contained in the IEEE/696 document. In transferring data from a floppy disk directly into main memory, the DJDMA assumes that the permanent master in the system will respond to bus requests by the controller fast enough so that data will not be lost. If an 8 inch double density drive is connected to the controller, a byte of data is read or written every 16 microseconds. The transfer rate for single density 8 inch drives and double density 5 1/4 inch drives is a byte every 32 microseconds. Single density $5\ 1/4$ inch drives have a transfer rate of one byte every 64 microseconds. If some device, such as a front panel, holds the READY line of the bus down for extended periods during disk transfers, data is lost and the controller cannot function properly. Morrow Designs assumes that the user has made the proper determination concerning the ability of his system to respond to bus requests from the DJDMA so that data is not lost during disk transfers. Morrow Designs is not responsible for operation of the controller in systems that cannot respond to bus requests at least as fast as those detailed above for the various types of floppy disk drives. #### 4. INTERRUPTS At the lower left area of the DJDMA circuit board, just above the edge connector fingers, is a jumper area designed so users can connect the board's interrupt request bus driver to one of the nine interrupt request lines: VIØ*, VII*, VI2*, VI3*, VI4*, VI5*, VI6*, VI7*, or PINT* (See the component layout for an illustration of this area). If the system does not use interrupts, there is no need to connect J3 to any of these lines. If J3 is not jumpered, it appears to the system that the controller has entered a pause state when it executes an interrupt request command. All activity stops (just as it does after a halt command). When the next start pulse is sent to the controller, it picks up its next instruction from the memory location immediately following the status byte of the interrupt request command (this is not the same as a halt command). The DJDMA is shipped from the factory without any jumpering between J3 and the interrupt request lines. If the controller is to generate interrupt requests, the user must determine which of the nine possible connections is appropriate for his system. The DECISION I user reference manuals contain information about how the DJDMA communicates with the interrupt controller on the MULT-I/O and WUNDERBUSS I/O boards, and should serve as an example of how interrupts from the DJDMA could work in other systems. ## 5. I/O CONNECTORS Refer to the component layout drawing included in this manual for a more complete understanding of the discussion in this section. There are three I/O connectors at the top of the DJDMA circuit board: Pl, P2, and P3. P3 is at the top left-hand side of the board and is the connector for the bit serial RS-232 port. It has three pins, numbered 1 through 3 from left to right. Pin-1 is the RS-232 ground signal, pin-2 is the input and pin-3 is the RS-232 output signal. To the right of P3 is P2. P2 has 34 pins and is used to connect $5\ 1/4$ inch drives to the controller. The pins are arranged in two rows - the odd numbered pins being just above the even numbered ones. The pins are numbered 1 through 33, odd from right to left, and 2 through 34, even from right to left. All the odd numbered pins are connected to ground while the even numbered pins carry information to and from $5\ 1/4$ inch floppy disk drives. Pl is the right-most connector and has 50 pins. This connector is used to connect 8 inch drives to the controller and has pins arranged in two rows, the same as P2. The upper pins are odd and are numbered 1 through 49, right to left. The lower pins are even and are numbered 2 to 50, right to left. As before, all odd pins are grounds while even pins carry signals between the controller and 8 inch drives. #### 6. JUMPERED SETTINGS Refer to the component layout drawing included in this manual for a more complete understanding of the discussion in this section. ## 6.1. EPROM Replacement The jumpered setting at Jl (located in the upper right hand corner of the board) is factory set B to C for a 2732 EPROM. It may be jumpered A to B, effectively replacing it with a 2716 EPROM. But please note that the factory setting must be maintained for proper system operation. The optional setting reduces the address space available and is only to be used in special, limited applications. # 6.2. Bootstrap Program J2 (located in the lower mid-section of the board) is jumpered B to C for conditional bootstrap operation. This mode is used for the Decision I and controllers are shipped from the factory with a jumper between these two pins. J2 is jumpered A to B for non-bootstrap mode in systems which cannot allow a temporary master to hog the bus and intend to boot the DJDMA controller by external means. ## 7. BOOTSTRAP LOAD The DJDMA performs an automatic bootstrap load at reset or power-on if J2 is jumpered B to C and a shunt jumper is placed between pins 1 and 2 of P3, or if a terminal is connected to P3. In either case, the controller halts the main CPU by taking control of the bus and reads the first 38 (hex) locations in main memory into its own local memory. Next it loads 0s into these first 38 (hex) bytes and places a short, 19 byte (decimal) handshake routine between 000038 and 00004A (hex). The bus is then released. When the main CPU executes the first part of the handshake routine, the controller restores the first 38 (hex) locations of main memory to its original state. Next, 80 (hex) bytes are loaded between 000080 and 0000FF (hex) from the first sector on Track 0 of the disk. Finally, the controller writes a control byte to the handshake routine which causes the main CPU to branch to location 000080 (hex). A listing of the 19-byte handshake routine is given below. Table 7-1. 19-Byte Handshake Routine | 21 4A ØØ
36 ØØ | START: | LXI | H,4A | |-------------------|---------|--|---| | 7E | I OOD . | | M,Ø | | · | LOOP: | | A,M | | | | | Α | | · · · | | JZ | LOOP | | | | CPI | 4ØH | | | | JNZ | LOOP | | | | JMP | 8ØH | | FF | | DB | ØFFH | | | | 36 ØØ 7E LOOP: B7 CA 3D ØØ FE 4Ø C2 3D ØØ C3 8Ø ØØ | 36 ØØ MVI 7E LOOP: MOV B7 ORA CA 3D ØØ JZ FE 4Ø CPI C2 3D ØØ JNZ C3 8Ø ØØ JMP | The controller will boot from either the first drive connected to the 8 inch port or the first drive connected to the 5 1/4 inch port. The decision as to which port to choose is determined by testing for a "drive ready" signal. The 8 inch port is tested first. The controller will alternately continue to test for "drive ready" indefinitely to allow the user time to insert a diskette. This is evidenced by the indicator lights on the disk drives. They will alternately blink as the controller checks for the ready signal. The second second second #### 8. BOOTING THE DJDMA The following is the proper procedure for booting the DJDMA: - 1. Open the door of any drive the DJDMA could boot from. - Insert a bootstrap diskette in the boot drive WITHOUT closing the driver door. - Depress the RESET switch. - 4. While the RESET switch is depressed, close the drive door. - 5. Release the RESET switch. It is possible that the above procedure will have to be repeated twice depending on the value of location \emptyset . If a shunt jumper across pins 2 and 3 of P3 is not in place or if a terminal is not connected to P3, the controller powers itself up in normal "cycle steal" mode and waits for commands from the system. #### 9. FORMATTING DISKETTES There are no firmware commands on the DJDMA to format diskettes for two reasons: Formatting is a dangerous operation. If a diskette is in a drive with valuable information written on it, an accidental format command could destroy this data. The controller is also capable of formatting a wide variety of diskettes and the EPROM is not large enough to accommodate both the command processor code and all of the desirable format routines. For these reasons, the format routines are loaded from main memory using the WRITE CONTROLLER MEMORY command and executed using the EXECUTE CONTROLLER ROUTINE command. A listing of two format programs for IBM soft-sectored 8 inch diskettes and North Star hard-sectored 5 1/4 inch diskettes appears as an appendix to this manual. These programs are also available on diskettes for a modest cost for those who wish to avoid using controller commands not supported in the field. When a CP/M operating system is shipped with either a lone DJDMA controller or a disk system which includes a DJDMA controller, there are built-in commands on the system diskette which will format both types of diskettes. | 12-18-81 | | |------------------|--| | DJDMA/FORMAT.ASM | | 1-1 PAGE MACRO-8Ø
3.36 17-Mar-8Ø | initialize the stack pointer; initalize command addresss; start of program message; send the message; get response to drive number; test for valid input; invalid input message | send the message go back to start of program store the drive number in code type of density message wait for response test for improper input density encoded in bit 0 save for later use skip sector size if single density sector length message wait for improper input test for improper input send the message wait for input test for improper input test for improper input for input ierror exit form offset into sector table adjust for sector length code satore in format code | ifetch number of sectors istore in format code isector length code is 80,100, or 0 idecrement the sector type itest for cycle done istore 1/4 length in format code isend the message wait for input itest for improper input itest for improper input istore in format code double density istore in format code single density code command length iload the code iformand length istore command length istore command is command length istore code itest for drive not ready message idrive not ready error code itest for drive not ready idrive not ready idrive must be write protected | |---|--|--| | SP, ECODE+30H HL, 1030H (DOTCMD+1), HL HL, SDADVT (ATCMD+1), HL HL, SMES SG OUTM INPUT NC, DATAOK HL, BMES SG | START (SINGLE+1), A HL, DMES SG OUTM INPUT C, DEXIT 1 (DENSTY), A Z, SIDE HL, LMES SG OUTM INPUT C, DEXIT 3 Z, DEXIT 3 Z, DEXIT B, Ø E, A A HL, STABLE HL, STABLE HL, DE | A, M
(DLAST-DDFMT+DOUBLE), A
A, 20H
A, A
E
E
P, DCNST
(DSIZE-DDFMT+DOUBLE), A
HL, HMES SG
OUTM
INPUT
C, DEXIT
1
(DDSBIT-DDFMT+DOUBLE), A
(SDSBIT-SDFMT+SINGLE), A
HL, LSDCMD
B, ØAH
LCMD
HL, DOTCMD
B, 6
LCMD
LCMD
LCMD
LCMD
LCMD
HL, RMES SG
82H
Z, \$+6
HL, RMES SG
82H | | LD
LD
LD
LD
LD
LD
CALL
CALL
LD | CALL LD L | LD CALL CAL | | START: | DATAOK: | DCNST: SIDE: LOADC: | | 31 059E'
21 1030
22 0161'
21 113A
22 0167'
21 016F'
CD 011E'
CD 011E'
21 018A'
21 018A'
CD 011E' | | 7E
32 0407'
87
1D 005D'
12 005D'
12 005D'
13 005E'
21 0265 :
CD 011E'
CD 011E'
CD 011E'
CD 011E'
01 012A'
01 012A'
01 012A'
01 012A'
01 012A'
01 016B'
01 016B'
01 016B'
01 016B'
01 016B'
01 016B'
01 016B'
01 016B'
01 016B'
01 007B'
01 020B'
01 020B'
01 020B' | | 66666
66666
66666
66667
66612
66118
66118 | 0021.
0027.
0027.
0027.
0027.
0027.
0027.
0027.
0004. | 00057
00058
00058
00058
00058
00058
00058
00068
00071
00071
00081
00080
00086 | | send the message swait for input test for improper input discard all but bit 0 zero => start the program over go back and do the command over carriage return and line feed cutput the string adjusted execution address of format | or double density or adjustments for ouble density form llength te code into contr track execute ad tre command execute execute address track format exec | a and the the | <pre>;zero =</pre> | 0 | <pre>;pointer for status byte of halt cmd ;test for command string done ;status byte for execute command ;test for no error</pre> | <pre>;data byte of serial output command
;serial output command string length
;store the data
;back up to pointer
;load the command and execute</pre> | |--|---|----------------------|--------------------|--|---|---| | CALL OUTM CALL INPUT JP C, DEXIT AND 1 JP Z, START JP LOADC PROCED: LD HL, CRLF CALL OUTM LD HL, SDRDY LD A, (DENSTY) | 4 | ਤੇ ਤ <u>ੇ</u> | 4 4 4 | LCMD: LD DE,50H LD A,M LD (DE),A INC HL INC DE DEC B JP NZ,LCMD+3 ECMD: OUT (ØEFH),A | LD A, (DE) OR A JP Z, ECMD+3 LD A, (53H) CP 40H RET | OUTPUT: LD HL, SOCMD+1 LD B, 5 LD M, A DEC HL JP LCMD | | 0097' CD 011E' 009A' CD 012A' 009D' DA 001B' 00AA' E6 01 00A5' C3 0079' 00A8' 21 0327' 00AB' CD 011E' | 0084 B7
0085 CA 00C9 60B8 21 0147 60B8 06 0A 60B 60 0A 60C0 21 1159 60C9 22 0167 60CC 31 1030 60CC 31 10310 60CC 31 10310 | 6 4 6 8 7 6 8 | | 00FE 11 0050
00FE 7E
00FF 12
0100 23
0101 13
0103 C2 00FE 9103 C2 00FE 9106 D3 EF | 1 1 A B B B B B B B B B B B B B B B B B | 0114' 21 015C'
0117' 06 05
0119' 77
011A' 28
011B' C3 00FB' | 1-2 PAGE MACRO-80 3.36 17-Mar-80 12-18-81 DJDMA/FORMAT.ASM | PAGE 1-3 | get current byte of message; test for end of message; return at end of message; save the character pointer; output the character pointer; recover the character pointer; advance the character pointer; go get the next character | <pre>; serial input status byte ; test value for status ; test for character ready ; zero => new character ready ; zero out the status byte ; back up pointer to the character ; pickup the character ; save the data ; echo the data ; turn it into ASCII ; test for smaller than zero ; test for larger than three ; change ASCII to binary</pre> | |-------------------------|---
---| | MACRO-80 3.36 17-Mar-80 | LD A,M OR A RET Z PUSH HL CALL OUTPUT POP HL INC HL | LD HL, 3FH LD A, 40H SUB M JP NZ, INPUT+3 LD M, A DEC HL, LD A, M PUSH AF CALL OUTPUT POP AF AND 7FH CP 30H CP 30H CF C CR | | 12-18-81 | OUTM: | INPUT | | DJDMA/FORMAT.ASM | 782
CB8
CD CD
233
C33 | 21 603F
3E 40
96
C2 012D
77
2B
7E
F5
CD 0114
F1
F1
F6 7F
F6 30
D8
F7 30
F8 30
F8 30
F8 30
F8 30
C9 37
C9 37 | | Б ЈБМА, | 011E
012F
0121
0122
0125
0125 | 012A
012D
013B
0133
0133
0134
0137
0137
0137
0138
0138
0138
0148 | | PAGE 1-4 | <pre>;write controller memory command ;main memory address pointer ;byte count ;controller memory address pointer ;controller halt command ;halt command status byte</pre> | <pre>foutput character to controller cmd foutput data foutput character command status fcontroller halt command fhalt command status byte fexecute controller routine command format a track address fexecute command status fexecute command status</pre> | ; half command; status byte; status byte; advance the track value address; 26 sectors per track (512 bytes); 8 sectors per track (1024 bytes) | |----------------------------------|--|--|---| | 12-18-81 MACRO-8Ø 3.36 17-Mar-8Ø | LDDCMD: DB | DB 25H DB 0 SOCMD: DB 2BH DB 0 DB 0 DB 0 DB 0 DB 0 DB 25H DB 0 | Ę. | | DJDMA/FORMAT.ASM | 0147' Al
0148' 0328'
014A' 00
014B' 0131
014D' 1030
014F' 25
0150' 00
0151' Al
0152' 045C'
0154' 00
0155' 0112 | 0159' 25
015A' 00
015B' 28
015C' 00
015E' 25
015F' 00
0160' A2
0161' 1030
0163' 00 | | ``` DJDMA/FORMAT. ASM ``` 12-18-81 | 17-Ma | | |----------|--| | 3.36 | | | MACRO-80 | | ``` PAGE ar-80 ``` 1-5 CRLFS "IBM Compatable 8 inch Format Program" ``` DB ON SMESSG: 49 42 4D 20 43 6F 6D 70 61 74 61 62 6C 65 20 38 20 69 6E 63 72 6D 61 74 20 50 72 6F ``` Ø179' Ø17D' Ø181' Ø16F' Ø171' Ø175' "Select a Drive (0, 1, 2, or 3); CRLFS MA M 65 69 28 32 72 72 60000 53 65 63 74 26 44 76 65 26 36 31 2C 2C 26 33 33 3A 26 "Improper input - returning to start of program" CRLFS BMESSG: ``` DMESSG: 69 69 28 29 20 62 53 65 63 74 6F 75 65 2Ø 6E 73 20 ØDØA ØDØA BDBA 0185 0189 0191 0195 0195 0197 0198 0198 0183 0183 0183 0184 0106 0106 0106 0106 ØIEC. ØIED. ØIEF. 01F7 01FB 01FB 0203 0207 020B 0217 021B 021F 3213. ``` CRLFS 0 CRLFS "Select double density (1) or single density (0): 0 CRLFS "Select the byte length of a sector (0=256, 1=512, 2=1024): 8 A 8 LMESSG: 65 74 62 28 60 28 28 65 53 65 63 74 68 65 79 74 6 ØDØA 0224 0225 Ø22B' Ø22F' 0223 ``` DJDMA/FORMAT. ASM ``` 1-6 PAGE ``` CRLFS "Drive not ready - restart program? (0) or cycle (1): CRLPS "Write protected - restart program? (\emptyset) or cycle (l): "Select single (0) or double (1) sided media: CRLFS B A A DA DE 8 A 8 HMESSG: RMESSG: WMESSG: 65 65 65 65 65 65 65 67 67 28 28 32 33 33 34 34 60 60 60 60 60 60 60 60 0283 ' 0287 ' 028B ' 028F ' 0237'023B'023F'023F' Ø24B' Ø24F' 9284 . 99288 . 99288 . 99288 . 99268 . 99268 . 99268 . 99269 . 99206 . 99206 . 99206 . 99268 . 8265' 8267' 8268' 826E' 32A4 32A8 32AC 32BØ ``` | PAGE | | |-------------------------|--| | 17-Mar-80 | 0
CRLFS
"Formatting finished" | | MACRO-8Ø 3.36 17-Mar-8Ø | | | 12-18-81 | DB
FMESSG: DW | | JDMA/FORMAT.ASM | 31 20 29 3A
20 00
00 46 6F 72 6D
61 74 74 69
6E 67 20 66 | | DJDMA/FOI | 6316.
6311.
6311.
6312.
6314.
6316. | 46 6F 72 6D 61 74 74 69 6E 67 2Ø 66 69 6E 69 73 68 65 64 ØDØA ØØ 6311. 6312. 6314. 6318. 6326. 6324. 6327. CRLF: DW DB DENSTY: DB PAGE CRLFS Ø Ø | ΣW | |------| | T.A | | RMA | | /F0 | | IDMA | | ă | 1-8 PAGE | 17-Mar | | |---------------|--| | MACRO-8Ø 3.36 | | | 12-18-81 | | | | | ; check that the drive is ready | not ready error | ;error exit | ;test for write protected | ;write protected error code | reset index counter | get the new track value | ; compare with current track | ; save the track | imove circ nedd(s) ii needed
inointer to diek chift register | pointer to control port | recover the tack | ; compare with track 43 | ;no wile piecompensation
:carry => track is less than 43 | ;write precompensation bit set | | Pough carry bit throughout accumulator | Herde With drive pattern | select side 0 | ;restore drive pattern | turn off step command | organic of the register corresponding to the contract of c | | | wait for no index pulse present | | ; wait for leading edge of new indes pulse | <pre>;control byte - normal write/no CRC ;initialize control nort</pre> | | write precompensation & controller start | ; start the controller | :write the preamble | ;zero preamble length | • | write the zero preamble | ;control byte for 16 bit write | forange mode | Į, | 1 | | | control byte 8 bit
write | ; change mode | index mark | י דווספא אמדי | |--------------|------------|---------------------------------|-----------------|-------------|---------------------------|--|---------------------|-------------------------|------------------------------|------------------|---|-------------------------|------------------|-------------------------|---|--------------------------------|-------------|--|--------------------------|---------------|------------------------|-----------------------|--|-------------|-------|---------------------------------|-------|--|---|------|--|------------------------|---------------------|-----------------------|---------|-------------------------|--------------------------------|--------------|-------|-----------|--------|---|--------------------------|---------------|------------|---------------| | \$
1030H | HL. STATUS | 7, M | А, 82Н | 27 | ¥, 6 | A, 90H | (IX+ØBH).0 | A, (DTRCK) | (IY+1) | AF
NZ CFFV | HL, DI SKD | DE, CONTRL | AF | 2BH | C, LOADPC | A, 14H | (PRECMP), A | А, А
Иген | (IY+2) | 2 | (IY+2),A | (AMMSH) & | B, 5@H | A, (STATUS) | INDEX | A. (STATUS) | INDEX | Z, DDLBL2 | A, 90H
(DE), A | A, 0 | \$-1 | (4006H), A | DDLBL3 | B, ØCH | M, Ø | DDLBL4 | A, 810H | M. 52H | M,24H | M, 52H | M, 24H | M, 52H | A, 90H | (UE), A | M, 24n | *** | | EQU
PHASE | LD | BIT | r.D | RET | BIT | J 8 | 19 | LD | CP | CALL | 9 | ΓD | POP | | S R | | | S S C | AND | OR | <u>.</u> | ž : | 13 | 3 | AND a | | | a, | 3 3 | ΓD | EQU | 3: | DUNZ | LD | | DJNZ | J . | 3 3 | 10 | LD
0.1 | ΓD | 9: | 3 : | 3: | 3 2 | i | | DOUBLE | DDFMT: | | NREXIT | | | | | | | | | | | | | | LOADPC: | | | | | | | DDLBL1 | | DDLBL2: | | | | | PRECMP | on br 3. | CHARLES | | DDLBL4: | | | | | | | | | | | | | | 21 | | 3
E | י
פ
פ | מ מ | 2 8
2 8
3 | | 3A 10C | | | 21 400 | 11 | | 3 E S | 38 0 | 3E 14 | 32 I | | FD | F6 02 | | 35 | 06 50 | 3A 4 | 201 | 34 | E6 1 | | 12. | | 6 | 36 4 | 10 F | 90 | 36 8 | 1 E | 12. | 36 5 | 36 2 | 36 5 | 36 2 | 3 6 5 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 10.0 | 7
9 4 | 36 FC | | | Ø32B | 1030 | 1633 | 1035 | 1630 | 1000 | 103C | 103D | 1641 | 1044 | 1648 | 104B | 104E | 1.001 | 1054 | 1056 | 1058 | 105A | 105E | 1060 | 1063 | 1,065 | 106A | 106D | 106F | 1074 | 1076 | 1079 | 1.07B | 107F | 1080 | 1081 | 1085 | 1087 | 1,089 | TORB | 1685 | 1001 | 1092 | 1094 | 1096 | 1.098 | 1.09A | 1005 | 109E | 10A1 | | | 17-Mar-80 PAGE 1-9 | ıble | Write the postamble | zero preamble length | <pre>'Write the preamble '16 hit write mode w/obc</pre> | | first half of Al | second Al | | ;8 bit write mode w/CRC | ; change mode | inish sync bytes
sector header ID byte | - | erite the side | | <pre>;write the sector number</pre> | ;sector length code | the state of s | function with the pyres | | <pre>;write the CRC bytes ;reset CRC generator</pre> | e mod | ;4E postamble length | ;write the postamble | ;data field preamble | ;write the preamble | ;16 bit write w/CRC | ;cnange mode
;first half of Al | | ; second Al | third Al | ;8 bit write w/CRC | ;change mode
:finish the 3 svnc bytes | ader | sector length divided by four | sempty sector data byte | | strait four fill heston | <pre>;wile four fill bytes ;test for data field write done</pre> | ; CRC control byte | ; change mode
;write the CRC bytes | |--------------------|-------------------------|---------------------|----------------------|---|---------|------------------|-----------|--------|-------------------------|---------------|---|-------------|----------------|-------|-------------------------------------|---------------------|--|-------------------------|------|--|---------|----------------------|----------------------|----------------------|---------------------|---------------------|-----------------------------------|----------------|------------------|----------|--------------------|--|---------|---|-------------------------|--------|-------------------------|--|--------------------|---------------------------------------| | MACRO-80 3.36 | B, 32H
M, 4EH | CTGTOO | M, 60 | DDLBL6
A.81H | (DE), A | M, 44H | M, 44H | M, 89H | A, 91H | (DE), A | M, 89H
M, ØFEH | 0, W | т- ф
Ю. Ж | \$-1 | M, 1
S-1 | χ,
Τ, | A GATH | (DE), A | Ą ć | м, А
А, 90Н | (DE), A | В, 16Н
М. 4ЕН | DDLBL7 | B, ØCH | DDLBL8 | A, 81H | M, 44H | H68'W | M, 44H
M, 89H | M, 44H | A, 91H | (DE), A
M, 89H | M, ØFBH | B, 40H | \$-1
M,ØE5H | M,ØE5H | M,0E5H | DDLBL9 | A, 0A1H | (DE),A
M,A | | MACRO | LD | | | DUNZ | ĽΩ | 3 5 | 2 | 9 : | E | 3: | 3 3 | LD | 31 | EQU | nog
Bon | 9 5 | | 13 | 3 5 | 3 3 | ΓD | 3 3 | DJNZ | 9 6 | DANZ | 3 : | 2 2 | 9 : | 3 3 | ΓD | 9 : | 3 3 | ΓD | 2 | EOU | T.D | 3 5 | DUNZ | 9.5 | 33 | | 12-18-81 | DDLBL5: | - MITOOD. | DDLBL6: | | , | · | | | | | | and desired | DIRCK | DSIDE | DSECT | 100010 | מחסימים | | | | | DDLBL7; | | DDI.BI.8 | | | | | | | | | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | DSIZE
DDLBL9: | | | | | | | DJDMA/FORMAT.ASM | 06 32
36 4E
10 FC | | | 16 FC
3E 81 | | 36 44
36 89 | | 36 89 | | 36 99 | | 36 00 | 36 00 | 36 93 | | 36 Ø1 | 3E A1 | | 7.7 | 3E 9Ø | | 86 16
36 4E | | | | | | 36 89
36 44 | | | 3£
91
12 | | | 06 40 | | | 36 ES | | | 77 | | DJDMA/F | 10A3
10A5
10A7 | 1649 | 10AB | 10AL
10AF | 10B1 | 1084
1084 | 10B6 | 16BA | 10BC | 1986 | 1001 | 10C3 | 10C5 | 10C6 | 10C8 | 1.0C9 | 10CB | 1.0CD | 10CF | 1000 | 1602 | 1603 | 1007 | 100B | 10DD | 10E1 | 10E2 | 10E4 | 10E8 | 10EA | 10EE | 10EF | 10F1 | 10F3 | 10F5 | 10F7 | 10F9 | LØFD | 10FF | 1102 | | Σ | |----| | Ø | | Æ | | _• | | H | | Z, | | Σ | | 24 | | o | | ᅜ | | ` | | ⋖ | | Σ | | Ω | | - | | á | | | | 6 17-Mar-80 PAGE 1-10 | turn off the | | | | <pre>!test for last sector +1</pre> | i ; first byte of postamble | | | W () | postamble length less one | A : Write the mostamble | LOOP | | double sided bit test | (301) | :conditionally switch | | | ; preamble | | ATUS) ; write a fill byte | ; wait for the index pulse | В | ;recover | •• • | : c) ;uive partern
:turn off the sten command | ;change read/write | H), A | format; | trailing fill | trailing fill | italing fill byte | A ;turn off the write gate | | | ;status code | 44 | • •• | •• | return with current track value | | |-----------------------|--------------|---------|---------------|--------|-------------------------------------|-----------------------------|-------------|---------|----------|---------------------------|-------------------------|------------|-----------|-----------------------|----------|-----------------------|---------------|-------|------------|-----------|---------------------------|----------------------------|----|-----------|--------------|--|--------------------|---|-----------|---------------|---------------|-------------------|----------------------------|-----|---------------|--------------|---------------|------|---------------|---------------------------------|------| | MACRO-8Ø 3.36 | LD M, A | | LD A, (DSECT) | CP JRH | _ | | | LD A, 1 | LD B 25u | £ | DJNZ | | LD M, 4EH | EOU S1 | | ~ | LD (DSIDE), A | _ | , | LA AF, AF | | ۵ | | EX AF, AF | LD A. (TV+2) | • | _ | | | LD M, 4EH | LD M AFR | ~ | | | LD (4006H), A | LD A, 40H | LD A. (DTRCK) | · · | LD (DTRCK), A | KET.
DEPHASE | PAGE | | 12-18-81 | | | | | DLAST | J. | | | | DDLBLA: | | | | DDSBIT | | | | | | DLBLB | | | | | | | | | . Ord rad | | | | | | | | DDADVT: | | | • | | | (AT.ASM | 77
3E 9Ø | 34 1900 | • | FE 1B | | 36 4E
38 82 | э 64 | 1 (1) | 6 35 | ۰ | 50 8 | 9 6 |) LO | , | 3A 1.0C6 | , | 9 5 | 36 4E | • | | 4 | 36 1.0
28 57 | ¥ | 0 | PD 7E 02 | 6 ØC | 700 | 4 4 6 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4E | | 4 | ا وا | 12
3E Ø6 | 3 4 | 40 | , | 10C4 | 2 | | | | | JDMA/FORMAT.ASM | 1103 | | | | 1.0C | 2 E | 11 | 113 | 116 | 118 | IIA
C | <u>ا</u> ا | 20 | 21 | 2 2 | ט ג
ט ג | 9 0 | 2B | 2D | 2E | 300 | 2 G
2 G | 37 | 38 | 3A | 30 | 4 C | | | | | | | | | | | | | | | | 12-18-81 | TO-01-31 | |------------------|----------| | DJDMA/FORMAT.ASM | | PAGE MACRO-8Ø 3.36 17-Mar-8Ø | | second byte filled with names drive | select the new drive | return if wrong value | | | jupdate drive control register | | | | | reset the index counter | ;calibrate the head(s) | test for track zero | | £ 2.00 £ 2.00 £ | dring to the drive ready | julive not ready code | | protect pic | water procede ellot code | reset the index counter | get the new track | ; compare with current track | ;do track seek if necessarv | ;controller data register | ; control register | preamble length | | | Wate tot no index puise | | wait for leading edge of new index nulse | clear the CRC register & turn on write gate | | | start the controller | | ;write the preamble | ; 16 Dit write mode | change modes | that for more religion | ourite the services of | ha 1 4 | *8 bit write mode | or with modes | second half of PC | | | ;write the postamble | 16 bit write mode | וזס מזר איזרם וומום | |------------|-------------------------------------|----------------------|---|-----------|-------------|--------------------------------|-------------|------|------|------------|-------------------------|------------------------|---------------------|-----------|-----------------|--------------------------|-----------------------|------|-------------|--------------------------|-------------------------|-------------------|------------------------------|-----------------------------|---------------------------|--------------------|-----------------|-------------|---|-------------------------|-------|--|---|---------|--------|----------------------|------------|---------------------|---------------------|--------------|------------------------|------------------------|--------|-------------------|---------------|-------------------|--------|------------|----------------------|-------------------|---------------------| | \$ | A, Ø | SDRIVE | ZN | A, (IY+2) | OFH (Adden) | HI. 6 | H. | А, Н | 7 | NZ, SDWAIT | (IX+@BH),A | HOME | 5, M | L, SNKEXT | 7 M | HC8 4 | 7,0211 | ₹.9 | А. 901Н | ZN | 0'(IX+ØBH),0 | A, (STRCK) | (IX+I) | NZ, SEEK | HL, DI SKD | DE, CONTRL | В, 28Н | A, (STATUS) | NZ. SDLBL) | A. (STATUS) | INDEX | Z, SDLBL2 | A, 90H | (DE), A | A, 44H | (4006H), A | M, OFFH | SULBLS | A, 500 H | B. GCH | M. GAAH | Spi.Bi.4 | M.0F7H | A, 90H | (DE).A | M, 7AH | B, 1AH | M, ØFFH | SDLBL5 | A. 80H | | | SINGLE EQU | SDFMT: LD | CALL | RET | O. C. | 5 5 | 33 | SDWAIT: DEC | | OR | JR | | SDTRKØ: CALL | BIT | Shany. | | SNREXT: LD | | BIT | ΓD | RET | QT | ΓD | CP | CALL | ĽD | G | | di : Lidude | A. S. | SDLBL2: LD | | JR | O. | d. | 3: | | SULBL3: LD | 150 NZ | 3 5 | 3 | SDLBL4: LD | | PD | i i | ΓD | LD | TD | SDLBL5: LD | DJNZ | SMLOOP: LD | | | | | CD 00A6 | C 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 E | 49 | | 2B | 70 | | F
E | - 6 | ט פ | 28 8E | | 7E | 3E 82 | C8 | _ | 3E 9Ø | | DD 36 ØB ØØ | 10 | | | 11 4001 | | 38 4883 | 10 | | | _ | <u>بر</u> | 35 year | 35 44 | 4 | | | | } | | 36 AA | Į. | 36 F7 | 3E 9Ø | | | ۰ | 36 FF | 9 | 3E 8Ø | , | | Ø45C* | 1030 | 1032 | 1836 | 1039 | 103B | 103E | 1641 | 1642 | 1943 | 1844 | 1040 | 1840 | 184E | 1050 | 1.053 | 1055 | 1057 | 1058 | 1.05A | 105C | 1050 | 1991 | 1004 | 1001 | 1964 | 1828 | 1072 | 1075 | 1077 | 1079 | 107C | 10/6 | 1682 | 1083 | 1085 | 1088 | 108A | 1,08C | 108E | 108F | 1691 | 1093 | 1095 | 1097 | 1099 | 109A | 169C | 1.09E | TOWN | 10A2 | | | 12-18-81 | |-------------| | /FORMAT.ASM | | DJDMA/ | PAGE MACRO-8Ø 3.36 17-Mar-8Ø | change modes sector header preamble length half a zero cell write the preamble change modes first half of FE enable CRC & 8 bit write change modes schange modes schange modes | <pre>;write the track ;write the sector number ;write the sector length code ;change modes</pre> | <pre>;write the CRC bytes ;reset the CRC ;change modes ;sector header postamble length ;write the postamble ;16 bit write mode ;change modes ;data field preamble length ;half a zero cell</pre> | intite the preamble senable CRC & 16 bit write ; change modes ; first half of FB ; shange modes ; sector data field length ; write the data field ; change modes ; change modes | <pre>;write the CRC bytes ;reset the CRC ;change modes ;get the current sector ;advance ;compare with 27 ;first postamble byte ;zero => all sectors written ;update the sector ;postamble length less one ;write the postamble ;test for more sectors to format ;first fill byte ;side bit</pre> | |--|--|--|---|---| | (DE), A
B, ØCH
M, ØAAH
SDLBL6
A, 81H
(DE), A
M, ØF5H
A, 91H
(DE), A
M, 7EH | 5, 5
6, 1
6, 1
6, 1
8, 1
8, 9A1H
(DE), A | M, A
A, 90H
(DE), A
B, ØBH
M, ØFFH
SDLBL7
A, 80H
(DE), A
B, ØCH
M, ØAAH | SDLBLB
A,81H
(DE),A
M,0F5H
A,91H
(DE),A
M,6FH
B,80H
M,0E5H
SDLBL9
A,0A1H
(DE),A | M, A, A, A, A, A, A, B, A, B, B, 1AH M, ØFFH NZ, \$+4 A, 1 B, 1AH M, ØFFH SDLBLA NZ, SMLOOP M, ØFFH SDL BLA B, 1AH M, ØFFH SDL BLA NZ, SMLOOP M, ØFFH B, Ø | | 1.6 : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | | | | | SDLBL6: | STRCK
SSIDE
SSECT | SDLBL7; | SDLBL9; | SDLBLA: | | 12
86 ØC
36 ØC
10 FC
12 81
12 91
12 91
36 7E
36 ØØ | 0 0 04 | 77
3E 96
96 9B
96 9B
1E FF
12
12
96 9C | | 77
3E 90
112
3A 10BA
3C FE
3C FE
3C 10BA
3C 1A
3C FF
10 FC
3C FF
9C 00 | | 1004
1005
1007
1008
1008
1008
1008
1008
1008
1008 | 1086
1087
1088
1088
1088
1088
1088
1086 | 10001
10004
10004
10009
1000
1000 | 1002
1004
1004
1006
1006
1006
1006
1066
1066 | 10E8
10E9
10EB
10EC
10EC
10F2
10F8
10FB
10FB
10FB
1103
1103 | | MACI | | |------------------|--| | 12-18-81 | | | DJDMA/FORMAT.ASM | | | 17-Mar-80 PAGE 1-13 | <pre>'get the current side 'conditionally switch side bits 'update the side byte 'write second fill byte 'preamble length less one 'save the double sided status
'write a fill byte 'wait for the index hole 'recover the double sided 'get the drive pattern 'turn off the step command 'turn on head one 'update drive control register 'yrite first preamble byte 'go format the other side 'trailing byte 'trailing byte 'turn off write gate 'turn off the controller 'status code 'get the current track 'get the track value 'get the track value 'get the track value 'return with track value</pre> | | |---------------------|---|--| | MACRO-8Ø 3.36 17-M | EQU \$-1 LD A, (SSIDE) XOR B LD (SSIDE), A LD M, ØFFH LD B, 19H EX AF, AF' LD A, (STATUS) AND INDEX JR Z, SDLBLB EX AF, AF' LD A, (STATUS) AND GFH LD A, (STRCK) RET SEQU SE | | | 12-18-81 | SDSBIT EG LIL LIL LID LID LID LID AN AN AN AN AN LID LID LID LID LID LID LID LI | | | ORMAT.ASM | 3A 10BB
AB
32 10BB
36 FF
66 19
08 F
3A 4003
E6 10
28 F7
28 0F
FD 7E 02
FG 0C
FG 0C
AF
C3 10BB
32 4006
32 4006
32 4006
32 4006
32 4006
32 4006
32 4006 | | | DJ DMA/ FORMAT | 1106
11087
11088
11088
11113
11113
11115
11116
11117
11128
11129
11128
11139
11131
11131
11131
11131
11131
11131
11131 | | ``` (DATA-NSFMT+FORMAT), A (CPDATA-NSFMT+FORMAT), A A, M (STRACK-NSFMT+FORMAT), A (TRACK-NSFMT+FORMAT), A (DEN1-NSFMT+FORMAT), A A, B (DEN2-NSFMT+FORMAT), A DE (DFLAG-NSFMT+FORMAT), A Z, DATAC SP, ECODE+30H HL, 1030H (DOTCMD+1), HL A, 20H (FORMAT+1), A HL, LMESSG HL, BMESSG OUTM START HL, SMESSG NC, DATAOK HL, STABLE HL, DMESSG Z, STOREO AF HL, HMESSG C, DEXIT Z, DEXIT C, DEXIT C, DEXIT B, Ø51H INPUT OUTM B, ØD1H HL, DE OUTM INPUT INPUT OUTM OUTM PUSH LD CALL CALL POP JP AND DATAOK: START: DEXIT: STOREO: 8484° 8486° 0385 024D 013E 014A 0470 Ø18C, 002A 013E 0215 · 013E · 014A · Ø1E2 83 8821 • 88 32 Ø41Ø* D5 Ø3D7 • 014A Ø13E' Ø14A' 0182 Ø3DE 0021 Ø2BF 0450 .9800 0021 . 6000 000B . 000E . 6666. 661B' 661E' 6621' 0015° ØØ11. 8846° 864A 005B' 005E' 005F' 0060' 8645 ØØ63° 6669. 6660. 6660. 6678. 6673. 6673. 0027 002A 002D 6600 869B 304D .8900 0030 0000 0053 0054 0057 007C' 007F' 0082' ``` ``` (CPDATA-NSFMT+FORMAT), A A, ØE5H A, (STRACK-NSFMT+FORMAT) B (DATA-NSFMT+FORMAT), A HL, LFDCMD B, ØAH HL, ENTRY (DOTCMD+1), HL A, "*" A, 10H Z, STORED HL, TYPE-80H HL, NMES SG Z, $+6 HL, WMES SG OUTM HL, DOTCMD HL, RMESSG NZ, FMTRCK HL, FMESSG OUTPUT HL, ATCMD B,6 LCMD Z, CONTUE HL, RMESSG OUTM Z, PROCED HL, DOTCMD C, DEXIT Z, LOADC C, DEXIT Z, START HL, CRLF INPUT INPUT LOADC OUTM CCMD START OUTM CALL LD LD LD LD CALL CALL CALL JP JP JP JP JP JP CALL CALL COALL COALL COALL COALL LD CALL LD LD CP CP CP CALL STORED: DATAC: PROCED: CONTUE: LOADC: ENDFMT: FMTRCK: 83 5F D5 21 Ø282' CD Ø13E' CD Ø14A' D1 DA ØØ21' E6 Ø1 CA 00AE' 0105 0105 0406 0404 0167 02F4 Ø11B . 1010 0134 017C 06 3A Ø3DE 036C 013E 0000 Ø11B ØØE9 JØ8A 6684 6685 6686 6687 . 1600 308D .6600 909C 00F3 OOFB' OOFE 0101 ``` C3 ØØFE' 0118 Ø11B' Ø11F 1-3 PAGE ENDFMT NZ, LCMD+3 DE, 50H A, M (DE), A HL LCMD: LD LD LD INC INC JP (ØEFH),A DE ECMD: Ø126. Ø128. 0129 A, (DE) A OUT DEC LD OR JP LD CP D3 EF 1B 1A B7 CA Ø129 ' 3A Ø053 FE 4Ø 012A 012B 012E 0131 0133 Z, ECMD+3 A, (53H) 40H HL, SOCMD+1 B, 5 M, A 21 Ø172 ' Ø6 Ø5 77 28 C3 Ø11B ' Ø134' Ø137' Ø139' Ø13A' Ø13B' OUTPUT: HL OUTPUT LD OR RET PUSH CALL POP INC CB E5 CD Ø134' E1 23 C3 Ø13E' 013E' 013F' 0140' 0141' 0142' 0145' OUTM: HL HL OUTM NZ, INPUT+3 HL A, M AF OUTPUT AF 7FH 3ØH C HL,3FH A,40H M INPUT: 21 ØØ3F 3E 4Ø 014A. 014D. 014F. 0150. 0153. 0154. 0155. 0155. Ø15D Ø15F 0162 | MACRO-80 | | |----------|--| | 12-20-81 | | | 5 INCH I | | | ØA1H
FORMAT
Ø
ECODE-FORMAT
1030H
25H | 2BH
0
0
26
25H | ØA2H
1030H
0
25H | ØA2H
ADVTRK
Ø
25H | 35
40
80 | 90H
0A0H
0C0H
0
0F0H
0D0H
0E0H | |---|---|---|---|----------------------------------|--| | LFDCMD: DB DW DB DW DW DW DW DW DW | SOCMD: DB DB DB DB DB | DOTCMD: DB DW DB DB DB | ATCMD: DB DW DB DB | STABLE: DB DB DB | TYPE: DB | | Ø167' A1
Ø168' Ø384'
Ø16A' ØØ
Ø16B' ØØEE
Ø16D' 1Ø3Ø
Ø16F' 25 | 0171 2B
0172 00
0173 00
0174 25
0175 00 | 0176 A2
0177 1030
0179 00
017A 25
017B 00 | Ø17C' A2
Ø17D' 1114
Ø17F' ØØ
Ø18Ø'' 25
Ø18I' ØØ | Ø182' 23
Ø183' 28
Ø184' 5Ø | 0185 90
0186 A0
0187 C0
0188 00
0189 F0
0188 E0 | ``` CRLFS "Select double density (l) or single density (m{\theta}): CRLFS "Select the number of tracks (\theta=35, 1=40, 2=80): CRLFS "North Star Compatable 5 1/4 inch Format Program" CRLFS "Improper input - returning to start of program" 2, or "Select a Drive (0, 1, CRLFS CRLFS 0 ₹ 3 8 8 A B 3838 8 2 8 SMESSG: BMESSG: DMESSG: LMESSG: 65 69 28 32 72 29 775 977 977 977 977 977 977 65 20 20 20 20 40 20 34 34 65 72 72 72 74 63 64 67 67 64 69 ပ္ 74 61 65 28 31 2F 69 6E 228 46 6D 61 72 61 8D8A 49 6D 6F 7Ø 8D8A 53 65 3A 21 86 808A ODGA 611AE 611BA 611BA 611BA 611BB 611CA 611CA 611CB 611CB 611CB 618C 618E 6192 6196 619A 61F4. 61F6. 6266. 6266. 6216. 6216. 6217. 6217. 6227. 6227. 6227. 6237. 6237. Ø1A2' Ø1A6' Ø1AA' 01E4 01E8 01EC 024D' 324C ``` ``` DJDMA/FORMAT.ASM 5 INCH 12-20-81 ``` ``` Ø CRLFS "Select North Star (Ø) or CP/M (1) data compatibility: "Drive not ready - restart program? (0) or cycle (1): "Select single (0) or double (1) sided media: CRLFS CRLFS DA BO DW DW NMESSG: HMESSG: RMESSG: 60 62 62 62 62 63 64 64 64 69 6E 72 72 72 72 72 72 72 72 BDBA 025F 0263 0267 026F 0273 0277 027B 0282 0282 02A4 ' Ø2B4 Ø2B8 02BC 02BE 02BE 02C1 02C5 02C9 02CD 02D1 02D1 02D5 02E1 02E7 02E7 02E7 03E6 03B6 03B6 03B6 03B6 03B6 ``` | ľ | į | 1 | | |---|---|---|--| | ţ | | 2 | | | ſ | ì | • | | | | | | | | | | | | | | | | | | 0
CRLFS
"Write protected - restart program? (Ø) or cycle (l); " | | 0
CRLFS
"Formatting finished" | S | |---|---|--------------------------------------|------------------------------| | 0
CRLFS
"Writ | | Ø
CRLFS
"Forme | CRLFS
Ø | | DB
DW | | DB
DB | DW
DB
PAGE | | WMESSG: | | FMESSG: | CRLF: | | 29
69
78
65 | 2D 20 72 65
73 74 61 72
74 20 70 72
6F 67 72 61
6D 3F 20 28
20 6F 72 20
63 79 63 6C
65 20 28 | 29 29 29 | 6 9
4 | | 632A
632E
632E
6332
6332
633A
633A | 0 0 3 4 4 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0366
0368
0368
0372
0372 | 637E
6381
6381
6383 | | | HASE | LD A, 6 | | N2 | | OR GRH | | LL HSYNC | • | | CALL HOME | TP 7 NDEVIE | • | A, (TRACK) | CP (IY+1) | - | | AND 40H | - | • | LL HSYNC | JR Z,NREXIT | 22 | CF (IX+ØAH) | LD A 90H | • | HL, DISKD | | | | LD A, 0 | EQU \$-1 | 10 a 640 | | Ą | | KKA
PDD " " " | • | SBC A P | | | | | | EX (20) | EX (SP), HL | NZ ZERO | | OR A | |--------|-------|---------|------|-------------|-------|--------|------|----------|--|------|-----------|-------------|--------|------------|-----------|---------|------|---------|------|------|----------|-------------|----------|-------------|----------|------|-----------|-------------------|-----------|------|---------|----------|----------|--------|--------------|--------|------------------|------|----------|-------|------|------|-----------|-------|---------------|-------------|---------|---------|------| | FORMAT | Nepum | I W JCN | | | | | | | NREXIT: | 200 | TKACKID : | | ENTRY: | | | | | | | | WSECTØ: | ٠ <u>٠</u> | | | | | | | - | | | DENI | 4 1- | 1 '7 | | STRACK | | τ, (| σ | 14 | : 0 | , , | CSTART: L | | | 1 12 | | 1 | 0 | | | 3E 00 | | Cig | DD 36 ØB ØØ | 7E 02 | | | | 3.8 8.2
20
20
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3. | CD | | 28 F6 | • | 111 | _ | 38 4003 | | - | | | CD WWA9 | | DD BE 6A | 75 | | | | ;
; 22
; 22 | JU /1 189 | _ | | 1. | 3E 64 | 3.0 OF | 3E 18 | ŗ. | C6 085 | | l | E6 10 | | | 32 4006 | 36 00 | | | | 3A 1Ø83 | B7 | | 0384 | 1030 | 1032 | 1035 | 1036 | 103A | 103D | 103F | 1642 | 1645 | 1648 | 104B | 164D | 164F | 1.053 | 1000 | 7.0550 | 105F | 1901 | 1063 | 1864 | 166B | 106D | 106E | 1671 | 1073 | 1075 | 16/8 | 10/15 | 1 4 8 4 | 1682 | 1683 | 1084 | 1085 | 1087 | 1684
2004 | 1088 | 108C | 108E | 1601 | 1092 | 1094 | 1096 | 1098 | 109B | 1 0 9D | 109E | 109F | 10A1 | 10A4 | ``` AF, AF' A, E (CPDATA), A AF, AF' (SP), HL (SP), HL E, 11H Z, $+4 B, 20H (SP), HL (SP), HL A, E A, (STATUS) INDEX Z, ILOOP Z,LASTS M,ØFBH (SP),HL (SP),HL M,ØFBH B,5CH E,20H S-1 (SP),HL (SP),HL M,E $-1 (SP),HL (SP),HL M,D D2LOOP (SP),HL (SP),HL M,A A,(DENI) D1LOOP B, 51H MACRO-80 3.36 D1LOOP: CPDATA D2LOOP: LASTS: DATA ILOOP: ``` | α | |----------| | α | | - 1 | | 200 | | 0 | | - 1 | | Ö | | _ | | | | | | INCH | | \simeq | | ~ | | - | | | | S | | | | Σ | | S | | ASM | | - 7 | | - | | -5 | | FORM | | 2 | | <u> </u> | | 2 | | 124 | | ` | | 4 | | DJDM | | á | | - | | Ã | | _ | | | | 17-Mar-80 PAGE 1-10 | turn
off write gate | get the current track
advance track value
update the track value
return with track value | |---------------------|--|---| | MACRO-8Ø 3.36 17-M | LD A, ØAH CP C JR NZ, ZEROW LD C, Ø LD C, Ø LD A, (DSIDE) XOR Ø-1 LD (DSIDE), A JR Z, FTDONE LD A, (IY+2) OR ØEH AND ØFDH LD (4004H), A JR ZEROW LD (A004H), A LD (CONTRL), A LD A, 40H RET | LD A, (TRACK) INC A LD (TRACK), A RET Ø Ø O .DEPHASE EQU \$\$ | | 10-07-71 | | ADVTRK: 111C TRACK: DSIDE: ECODE | | | 19F1 3E 9
19F3 29 A
19F4 29 A
19F6 9E 9A
19F8 3A 1
19FB EE 9
19FD 32 1
1189 28 9
1182 F6 91
1182 F6 91
1182 F6 91
1182 F6 91
1183 32 46
1197 B6 91
1197 B6 91
1197 B7 71
1197 B6 91
1197 B7 71
1197 71
1 | 32 C C C C C C C C C C C C C C C C C C C | | | | 0472 | Disk Jockey / DMA Component Layout ## Parts List | Amount | Function | Description | |--------|---------------|----------------------| | 1 | PC board | DJDMA | | 5 | Diode | 1N914 | | 1 | Transistor | 2N39Ø4 | | 6 | Transistor | 2N39Ø6 | | | | | | 2 | Regulator | +5 volts | | 1 | Regulator | +12 volts | | 1 | Regulator | -12 volts | | 1 | Resistor | 1K Ohm 1/4W 5% | | 2 | Resistor | 1 Meg Ohm 1/4W 5% | | 1 | Resistor | 12K Ohm 1/4W 5% | | 1 | Resistor | 1.2K Ohm 1/4W 5% | | 1 | Resistor | 1.5K Ohm 1/4W 5% | | 1 | Resistor | 180 Ohm 1/4W 5% | | 2 | Resistor | 27K Ohm 1/4W 5% | | 4 | Resistor | 33Ø Ohm 1/4W 5% | | 11 | Resistor | 3.3K Ohm 1/4W 5% | | 1 | Resistor | 390 Ohm 1/4W 5% | | 3 | Resistor | 4.7K Ohm 1/4W 5% | | 1 | Resistor | 47K Ohm 1/4W 5% | | | | 47K Olin 1/4W 34 | | 1 | Resistor | 2.0K Ohm 1/4W 1% | | 1 | Resistor | 20.0K Ohm 1/4W 1% | | 1 | Resistor | 28.0K Ohm 1/4W 1% | | 1 | SIP | 180K 1/8W 5% (10-pin | | 1 | SIP | 3.3K 1/8W 5% (8-pin | | | | | | 1 | Inductor | 4.7uh | | 1 | Capacitor | .001mf ceramic disk | | 13 | Capacitor | ·luf mono cap | | 1 | Capacitor | .Øl mylar cap | | 1 | Capacitor | 33pf silver/mica | | 2 | Capacitor | 47pf silver/mica | | 2 | Capacitor | 100pf silver/mica | | 1 | Capacitor | 1200pf silver/mica | | ī | Capacitor | 620 pf silver/mica | | 8 | Capacitor | luf dip. tant. | | | | rur dip. canc. | | 1 | Crystal | 4 MHz | | 1 | PCB Header | SIN RT> NHD 3 | | 1 | PCB Header | DIN RT> HD 34 | | 1 | PCB Header | DIN RT> HD 50 | | • | | . 2 | | 2 | Slide Jumpers | | | 2 | Screws | 632 X 5/16 Pan Phil | | ; | | -3 0, 20 ran riill | ## Parts List, Cont. | 2 | Hex Nuts | 632 | |---|---|--| | 2 2 | Heat Sinks
Heat Sinks | Low Profile 3 Fin Slimline 5 prong | | 1
13
12
2
15
1 | IC Socket IC Sockets IC Sockets IC Sockets IC Sockets IC Socket IC Socket IC Socket | Low Profile (8-pin) Low Profile (14-pin) Low Profile (16-pin) Low Profile (18-pin) Low Profile (20-pin) Low Profile (24-pin) Low Profile (28-pin) Low Profile (40-pin) | | 1 | IC | 1458 | | 2 | IC | 2114-3 RAM | | 1
1 | IC
IC | 74Ø4
74Ø6 | | 1
1
1
2
1
1
3
1
2
1
1
4
4
1
1
3
1 | IC I | 74LSØ2 74LSØ4 74LSØ8 74LS1Ø 74LS138 74LS139 74LS153 74LS221 74LS273 74LS279 74LS299 74LS373 74LS374 74LS38 74LS393 74LS75 | | 1
1 | IC
IC | 81LS95
81LS96 | | 1
1
5 | IC /
IC / | PAL
FPLA
PROM | ## Subject Index BRANCH IN CHANNEL, Board compatibility, 1 CONTROLLER HALT, 17 CP/M data buffer, 6 Command Pointer reset, 17 Command parameter lists, 5 Command status byte, Controller DMA channel, microprocessor, 1 supervision of data transfer, 1 Cycle steal mode, 24 DJDMA self boot capability, 2 DMA communication with main memory, Dangers of formatting diskettes, 24 Data recovery, 13 Data transfer, 21 Drive values, EXECUTE CONTROLLER ROUTINE, Extended addressing, 6 TEEE standards and board compatibilty, 1 Intelligent I/O channel, 1 Interrupt request lines, 12 Jumpering interrupt request lines, 22 Listing of DJDMA Controller Commands, 5 Listing of status byte codes, 8 Listing of valid sector values, 7 ## Subject Index Master permanent, 1, 4 temporary, 1, 4 OUTPUT TO SERIAL PORT, 16 Permanent master, 1, 4 Port enable and terminal connection, 17 Power-up or reset pointer, 4 Primitive I/O port - DJDMA, 4 Program Counter, 4 READ CONTROLLER MEMORY, 18 READ SECTOR, 7 READ TRACK, 14 Sector transfer sample, 14 SENSE DRIVE STATUS, 9 SERIAL INPUT ENABLE/DISABLE, 16 SET CHANNEL ADDRESS, 17 SET DMA ADDRESS, 6 SET ERROR RETRY COUNT, 13 SET HEAD UNLOAD/DRIVE DESELECT TIMEOUT, 14 SET INTERRUPT REQUEST, 12 SET LOGICAL DRIVE, 13 SET TRACK SIZE, 18 Serial port communication, 16 Start command, 3 Status flag for serial input, 16 Stealing bus cycles, 1 Stop command, 3 Temporary master, 1, 4 Track numbering, 8 Undefined I/O devices, 16 W WRITE CONTROLLER MEMORY, 19 WRITE SECTOR, 9 WRITE TRACK, 15 $\frac{\mathbf{Z}}{\mathbf{Z}}$ -80A - memory transfer, 19